Analysis of Thin Shells by the Element-Free Galerkin Method
نویسنده
چکیده
A meshless approach to the analysis of arbitrary Kirchhoff shells by the Element-Free Galerkin (EFG) method is presented. The shell theory used is geometrically exact and can be applied to deep shells. The method is based on moving least squares approximant. The method is meshless, which means that the discretization is independent of the geometric subdivision into “finite elements”. The satisfaction of the C1 continuity requirements are easily met by EFG since it requires only C1 weights; therefore, it is not necessary to resort to Mindlin-Reissner theory or to devices such as discrete Kirchhoff theory. The requirements of consistency are met by the use of a polynomial basis of quadratic or higher order. A subdivision similar to finite elements is used to provide a background mesh for numerical integration. The essential boundary conditions are enforced by Lagrange multipliers. Membrane locking, which is due to different approximation order for transverse and membrane displacements, is removed by using larger domains of influence with the quadratic basis, and by using quartic polynomial basis, which can prevent membrane locking completely. It is shown on the obstacle course for shells that the present technique performs well.
منابع مشابه
Element Free Galerkin Method for Static Analysis of Thin Micro/Nanoscale Plates Based on the Nonlocal Plate Theory
In this article, element free Galerkin method is used for static analysis of thin micro/nanoscale plates based on the nonlocal plate theory. The problem is solved for the plates with arbitrary boundary conditions. Since shape functions of the element free Galerkin method do not satisfy the Kronecker’s delta property, the penalty method is used to impose the essential boundary conditions. Discre...
متن کاملFree and Forced Vibration Analysis of Composite Laminated Conical Shells under Different Boundary Conditions Via Galerkin Method
In this paper, natural frequency and response of forced vibration of composite laminated conical shells under different boundary conditions are investigated. To this end, equations of Donnell's thin shell theory are used as governing equations. The analytical Galerkin method together with beam mode shapes as weighting functions is employed to solve the problem. Due to importance of boundary con...
متن کاملElement free Galerkin method for crack analysis of orthotropic plates
A new approach for analyzing cracked problems in 2D orthotropic materials using the well-known element free Galerkin method and orthotropic enrichment functions is proposed. The element free Galerkin method is a meshfree method which enables discontinuous problems to be modeled efficiently. In this study, element free Galerkin is extrinsically enriched by the recently developed crack-tip orthot...
متن کاملA New Three-Dimensional Refined Higher-Order Theory for Free Vibration Analysis of Composite Circular Cylindrical Shells
A new closed form formulation of three-dimensional (3-D) refined higher-order shell theory (RHOST) to analyze the free vibration of composite circular cylindrical shells has been presented in this article. The shell is considered to be laminated with orthotropic layers and simply supported boundary conditions. The proposed theory is used to investigate the effects of the in-plane and rotary ine...
متن کاملA FAST MESH-FREE GALERKIN METHOD FOR THE ANALYSIS OF STEADY-STATE HEAT TRANSFER
The element-free Galerkin method is employed for two-dimensional analysis of steady-state heat transfer. The unknown response of the system, i.e. temperature is approximated using the moving least squares technique. Numerical integration of governing simultaneous system of equations is performed by Gauss quadrature and new modified nodal integration techniques. Numerical examples and tests have...
متن کامل